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ABSTRACT 

Combining different types of data from varying sensors has the potential to be more 

accurate than a single sensor. This research fused airborne LiDAR data and WorldView-2 

(WV-2) multispectral imagery (MSI) data to create an improved classification image of 

urban San Francisco, California. A decision tree scenario was created by extracting 

features from the LiDAR, as well as NDVI from the multispectral data. Raster masks 

were created using these features and were processed as decision tree nodes resulting in 

seven classifications. Twelve regions of interest were created, then categorized and 

applied to the previous seven classifications via the maximum likelihood classification. 

The resulting classification images were then combined. A multispectral classification 

image using the same ROIs was also created for comparison. The fused classification 

image did a better job of preserving urban geometries than MSI data alone and suffered 

less from shadow anomalies. The fused results however, were not as accurate in 

differentiating trees from grasses as using only spectral results. Overall the fused LiDAR 

and MSI classification performed better than the MSI classification alone but further 

refinements to the decision tree scheme could probably be made to improve final results. 
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I. INTRODUCTION 

A. PURPOSE OF RESEARCH 

Two of the latest remote sensing technologies include light detection and ranging 

(LiDAR) and hyperspectral imaging (HSI). LiDAR is an active system similar to that of 

radar but sends visible and infrared pulses to calculate distances and produce a 3-

dimensional point cloud of ground structures. LiDAR has a unique advantage of being 

able to penetrate through foliage to capture some aspects within and below vegetation. 

Hyperspectral imaging is a passive system that captures distinct spectra of ground 

features, exploiting electronic characteristics and molecular vibrations to identify and 

classify materials. 

The purpose of this research was to look into techniques to fuse LiDAR and 

spectral data to classify urban environments. These two datasets were expected to 

complement each other and optimize classification capabilities. This thesis utilized 

WorldView-2 (WV-2) imagery. While technically an 8-band multispectral imaging (MSI) 

system, this imagery was chosen due to its higher spatial resolution and availability.  

Although highly capable in their own right, LiDAR and spectral information do 

lack certain details. LiDAR provides detailed information regarding geometries such as 

spatial distances, heights, and canopy penetration but lacks any information concerning 

the particularities in the electromagnetic spectrum. Spectral provides highly detailed 

electromagnetic information to the point of material identification, but it is limited to two 

dimensions without spatial information in the ‘z’ or height dimension. These technologies 

are uniquely matched to lead to fusion opportunities.   

Classification techniques ranging from building extraction to vegetation species 

identification are all available for comparison and combination. Although lacking the 

spectral resolution of a true hyperspectral sensor, the WorldView-2 satellite from 

DigitalGlobe has a unique advantage in being accessible to federal government, local 
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government, and private organizations. This thesis looked at the fusion of LiDAR and 

WorldView-2 data, but techniques developed here should be applicable to imaging 

spectroscopy.  

B. OBJECTIVE 

The primary objective of this thesis was to use the fusion of LiDAR and 

multispectral data to classify the urban environment of downtown San Francisco, 

California. The LiDAR data were collected as part of the American Recovery and 

Reinvestment Act’s (ARRA) Golden Gate LiDAR Project (GGLP) in the summer of 

2010. The WorldView-2 data were acquired via DigitalGlobe with satellite imagery 

collected in autumn of 2011.  

Downtown San Francisco is an area which includes a variety of ground materials 

ranging from coastal waters, beaches, and parks to urban housing and large skyscrapers. 

The final fused product is a classified urban image based upon criteria from both of the 

datasets. The goal is to create a LiDAR and MSI fused classified urban image that is 

more representative of reality than a classified urban image based on multispectral data 

alone.  

 In the background chapter there is an overview of LiDAR and electro-optical 

(EO) imaging presented along with information on previous work using single-source 

and multi-source fusion techniques. The Problem and Methods sections provide further 

information regarding the study area, software, methodologies used, and the actual 

application of the technique. The Evaluation and Summary section offer conclusions 

from the process and assesses the results.  
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II. BACKGROUND 

This chapter briefly looks at the fundamental operations as well as classification 

methods of a LiDAR imaging system and a multispectral system. This also takes an in-

depth look at the variety of techniques that have been previously used that take advantage 

multi-source fusion. Considering what has been accomplished in the past, it then 

discusses some of the theory behind this project. The last part of the Background chapter 

discusses the features of the area of interest, San Francisco, California. 

A. LIGHT DETECTION AND RANGING 

1. LiDAR Fundamentals 

Light detection and ranging is a remote sensing technique that works similar to 

radio detection and ranging (radar). These systems are known collectively as active 

imaging systems, as they emit electromagnetic pulses and time their return in order to 

detect an object’s distance. LiDAR uses ultraviolet, visible, or near infrared wavelength 

laser pulses rather than microwaves. LiDAR systems can be terrestrial, airborne, or 

space-borne. Commonly, terrestrial systems are used for 3D modeling, whereas air and 

space systems are used for wide area mapping. This paper focuses on airborne systems 

(Crutchley & Crow, 2009). 

When a laser pulse is emitted, it hits the surface of an object and is backscattered. 

Some scattered light is then returned towards the originating sensor and detected by a 

photo-detector. LiDAR sensors are also equipped with highly accurate position detection 

systems. Using both the Global Positioning System (GPS) constellation as well as an on-

board Inertial Measurement Unit (IMU), the LiDAR system can achieve an accurate 

absolute position and sensor orientation with respect to the Earth. The returned pulse is 

received as a waveform, or a long pulse with differing rates of intensities. Waveform 

information is typically measured amongst a set of thresholds and is broken into a set of 

distinct returns. Combining this information with the time difference information, points 

are generated with a latitude, longitude, and elevation. See Figure 1 for the typical data 

exchange from an airborne system (Crutchley & Crow 2009). 
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Figure 1.   LiDAR data flow in an airborne system (From Holden et al., 2002) 

After scanning an area, multiple returns and points are combined with each other 

in what is known as a point cloud. Point clouds are representative models of an area and 

are processed further to create products such as a digital surface model (DSM) and digital 

elevation model (DEM). Figure 2 shows an example of point cloud results after data 

processing. 

 

Figure 2.   Example of a point cloud after processing and colored by height  
(From Cambridge University, 2006) 
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2. LiDAR Classification 

With the values LiDAR provides of elevation and intensity, classification is 

possible with the point cloud alone. In a study by the University of Cambridge and 

University of Wales, they created land cover type classification employing elevation, 

intensity, and also point distribution frequency. Their study area included the meandering 

areas of the Garonne and Allier rivers in France. It was determined that clear water had 

the lowest reflectance of 0–10%, vegetation was about 50%, and soils were up to 57% 

with the highest reflectance. The classification method used a series of criteria based on 

height, intensity, and distribution which was then processed in the geographic 

information system ArcGIS and the programming languages C++ and MATLAB. When 

classifying land types, they achieved an accuracy of 95% and 94%. When classifying 

riparian forests, their accuracy varied from 66% and 98%. The study area consisted of 

natural and rural environments. Figure 3 shows one of their results near the Chatel 

Meander on the Allier River. 

 

Figure 3.   Results from LiDAR-only classification near the Chatel Meander of the 
Allier River in France  (From Antonarakis et al., 2008) 

In a thesis from the Naval Postgraduate School, LiDAR data was used to identify 

tree vegetation in the Elkhorn Slough of central California. With known vegetation 

characteristics of the study site, identification could be accomplished. QuickBird 
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multispectral imagery was used to identify regions of interest with Eucalyptus, Scrub 

Oak, Live Oak, and Monterey Cyprus trees. Tree types such as Eucalyptus and Oak trees 

were separated by differing return data. It was found that the Monterey Cyprus and 

Eucalyptus trees were similar in dimension and were separated by foliage density based 

on LiDAR return intensities. Density characteristics were analyzed as well as LiDAR 

intensity characteristics of the regions of interest. The conclusion was that LiDAR could 

be used to identify vegetation; however a detailed knowledge of the vegetated area must 

be collected and known via on-site surveys. Figure 4 shows the composite results for the 

LiDAR vegetation classification (Helt, 2005).   

 

 

Figure 4.   Results from Elkhorn Slough LiDAR classification: yellow-areas 
characteristics of Eucalyptus; green-areas with characteristics of Monterey 

Cyprus (After Helt, 2005). 
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B. SPECTRAL IMAGING 

1. Spectral Fundamentals 

Electro-optical sensors are a type of optical sensor that passively collects spectral 

radiance from a scene. The common types of EO sensors are panchromatic, multispectral, 

and hyperspectral. For remote sensing purposes, these sensors are deployed on an aircraft 

or satellite. Multispectral imaging sensors usually contain less than about 20 distinct 

spectral bands measuring energy at a few wavelengths. Hyperspectral imaging usually 

have hundreds of bands, which create a contiguous spectrum that can be formed into a 

hypercube. Although hyperspectral sensors are capable of excellent spectral resolution, 

they usually suffer from poorer spatial resolutions than their multispectral counterparts 

(Stein et al., 2002). 

Hyperspectral imaging sensors are also known as imaging spectrometers. One 

such sensor is AVIRIS (The Airborne Visible/Infrared Imaging Spectrometer) which is 

flown by The National Aeronautics and Space Admiration’s Jet Propulsion Laboratory 

(NASA JPL). This sensor has a spectral resolution of 10 nanometers covering the 0.4 to 

2.5 micrometer range in 224 spectral bands. Multispectral imaging provides synoptic 

spatial coverage but does not allow for the same precision of identification. Figure 5 

shows the spectral resolution differences between a MSI and HSI sensor (Kruse, 2007). 
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Figure 5.   Comparison of AVIRIS (left) hyperspectral spectra and ASTER (right) 
multispectral spectra for selected minerals, dry, and green vegetation  

(From Kruse, 2007). 

2. Multispectral Classification 

This section describes some of the multispectral satellites in use today as well as 

some of the classification methods used with the data that they provide. The systems 

discussed are Landsat, IKONOS, and WorldView-2. This section also discusses two 

multispectral techniques used for this project: the normalized difference vegetation index 

and maximum likelihood classification. 

a. Landsat 

The Landsat program began in the early 1970s as an earth observing 

program for use in applications such as agriculture, geology, and forestry. The first 
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satellite was originally named the Earth Resources Technology Satellite (ERTS) and was 

a joint effort between the U.S. Geological Survey and the National Aeronautics and 

Space Administration. Out of the seven satellites that have been launched in the program, 

Landsat 5 and Landsat 7 are the systems which remain operational. Landsat 7 has eight 

spectral bands with varying spatial resolution from 15 meters (panchromatic), 30 meters 

(multispectral), 60 meters (long-wave infrared), and 90 meters (thermal infrared). See 

Figure 6 for a timeline of Landsat imaging and Figure 7 for Landsat 7 spectral band 

ranges (USGS, 2012). 

 

Figure 6.   Landsat timeline and imaging samples (From USGS, 2012) 
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Figure 7.   Landsat 7 spectral band ranges (From USGS, 2012) 

In a study by the University of Minnesota, land cover classification and 

change were analyzed utilizing Landsat imagery around the Twin Cities area in 

Minnesota. They used data from the Landsat Thematic Mapper for 1986, 1991, 1998, and 

2002. A hybrid supervised-unsupervised classification technique was developed that 

clustered the data into subclasses then applied the maximum likelihood classifier. Their 

results showed that urban land development increased from 23.7% to 32.8% while rural 

land types decreased from 69.6% to 60.5%. Figure 8 shows the change detected from the 

four classification maps created (Yuan et al., 2005). 
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Figure 8.   Land cover changes from Landsat in the Twin Cities from 1986 to 2002 
(From Yuan et al., 2005) 

b. IKONOS 

IKONOS is a satellite system launched by the commercial company 

GeoEye. It was launched in 1999 and was the first satellite launched to offer sub-meter 

panchromatic images. Optimal spatial resolution is 0.82 meter (panchromatic) and 

3.28 meter (multispectral). It orbits at an altitude of 423 miles and has a revisit time of 

three days, with downlinks to multiple ground stations. It has applications from military 

intelligence to community mapping and has been used in stereo imaging and 

environmental monitoring. Figure 9 shows the IKONOS spectral response and Figure 10 

shows an example of a stereo pair collection (Dial & Grodecki, 2003). 
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Figure 9.   IKONOS spectral response bands (From Dial & Grodecki, 2003). 

 

Figure 10.   An example of an IKONOS visualization of a stereo pair and the satellite 
pass to obtain it (From Dial & Grodecki, 2003). 

The forest area around Flanders, Belgium was analyzed by Ghent 

University utilizing IKONOS imagery and object-based classification. Their algorithm 

divided features into three categories of features: spectral type, shape, and texture. It was 

a three step process that involved image segmentation, feature selection by genetic 

algorithms, and joint neural network based object classification. The project was initiated 

to show the potential of their techniques when there was a limited set of training data. 

The project was also demonstrated as a way to update the Flemish Forest Map with a 

regularly operational method. Figure 11 shows one of their results next to the current 
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Flemish Forest Map with forest areas marked and their results. They showed significantly 

higher classification accuracy when compared to a strategy without feature selection and 

joint network output. 

 

Figure 11.   Forest mapping results from IKONOS over Flanders, Belgium: left-Flemish 
Forest Map forest cover in yellow outline; right-genetic algorithm forest 

over in green outline (From Coillie et al., 2005) 

c. WorldView-2 

The spectral imagery used in this project was obtained by the WorldView-

2 satellite, operated commercially by DigitalGlobe. The system was launched on October 

8, 2009. WorldView-2 has a panchromatic resolution of 46 centimeters, a swath width of 

16.4 kilometers at nadir, and an average revisit period of 1.1 days. The satellite orbits at 

an altitude of 770 kilometers and can collect 975,000 square kilometers a day. 

WorldView-2 has 8 multispectral bands and is the highest commercially available at the 

time of this writing. The bands include a coastal (400–450 nm), blue (450- 510 nm), 

green (510- 580 nm), yellow (585–625 nm), red (630–690 nm), red edge (705–745 nm), 

near infrared (770–895 nm), and near infrared 2 (860–1040 nm).  The 8 bands give 
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WorldView-2 imagery an advantage over other MSI systems as their additional bands can 

lead to more specific classification and feature extraction results. Please see Figure 12 for 

the spectral band locations of WorldView-2 and Figure 13 for spectral radiance response 

of the system  (DigitalGlobe, 2011). 

 

Figure 12.   The wavelength ranges of WorldView-2 (From DigitalGlobe, 2011) 

 

Figure 13.   The Relative Spectral Radiance Response of WorldView-2  
(From DigitalGlobe, 2011) 
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d. NDVI 

NDVI stands for the Normalized Difference Vegetation Index. It is 

calculated from the red and near infrared values. The equation is as follows: 

Red
Red

NIRNDVI
NIR

−
=

+  
Equation 1: Normalized Difference Vegetation Index 

Like other materials, radiation emitted onto leaves can be absorbed or scattered as a 

function of wavelength. Green leaves absorb most of the radiation in the visible from 0.4 

to 0.7 microns and reflects most of the near infrared from 0.7 to 1.05 microns. Vegetation 

also has a strong red absorption band from 0.62 to 0.68 microns which has been 

correlated with biomass production. This reflectivity in the near infrared increases with 

increased photosynthetic activity. NDVI is a good indicator of vegetation. NDVI values 

range from -1.0 to +1.0 with typical healthy vegetation ranging from 0.2 to 0.8 (Santos & 

Negri, 1996). 

e. Maximum Likelihood Classification 

Maximum Likelihood classification is one of the major tools for 

classifying pixels in a spectral image. It is a supervised technique that requires training 

pixels which are used define each classification. The classifier is based on multivariate 

normal distribution theory and works to find the maximum for a given statistic. It 

assumes a normal distribution in each class. In normal distributions, the likelihood 

function ( | )P x k  can be expressed as: 
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Equation 2: Likelihood function from maximum likelihood classifier 

Where x  is the vector of a pixel with n bands and ( )kL x  is the likelihood memberships 

function of x  belonging to class k. Figure 14 shows an example of the maximum 

likelihood classification applied to a Landsat image (Liu et al., 2010).   
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Figure 14.   Sample of a Maximum Likelihood Classifier (From Liu et al., 2010) 

C.   MULTI-SOURCE FUSION LITERATURE REVIEW 

There have been many different approaches to analyzing the fusion of LiDAR and 

spectral data. Some approaches utilized multispectral imagery and others utilized 

hyperspectral imagery. This section takes a look at previous work done in the field in 

natural and urban environments. 

1. Fusion Vegetation Analysis 

In a joint study conducted by members of the University of Maryland, the 

University of California, and the Goddard Space Flight Center, LiDAR and hyperspectral 

data fusion was examined to observe biomass and stress in the Sierra Nevada.   

Waveform LiDAR data were collected by the Laser Vegetation Imaging Sensor (LVIS) 

and hyperspectral data were collected by AVIRIS. HSI image spectral endmembers were 

collected from green vegetation, non-photosynthetic, vegetation, soil, and shade. LVIS 

metrics, AVIRIS spectral indices, and their endmembers were analyzed. A correlation 

was found between shade fractions and LVIS calculated canopy height. Their study 

showed that biomass errors found with fusion and without fusion were different, but not 

statistically significant, particularly amongst hardwood trees and pine trees. It was found 

that the confidence intervals were narrowed with the fusion method relative to the 

individual data analyses. Overall, LiDAR was better suited for biomass estimation, with 

hyperspectral imagery used to refine predictions and determine canopy state and stress. 

Figure 15 shows the results of their project as a tilted 3D model (Swatantran et al., 2011). 
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Figure 15.   The fused results of biomass calculations in the Sierra Nevada  
(From Swatantran et al., 2011) 

2. Fusion and Shadowed Features 

 A paper from the Rochester Institute of Technology analyzed how to leverage 

LiDAR data to aid in hyperspectral target detection (Ientilucci, 2012). They analyzed 

how illuminations can be obtained by processing LiDAR to estimate varying illumination 

of targets within a scene. The data they used were from the SpecTIR Hyperspectral 

Airborne Rochester Experiment (SHARE) program tested over Rochester, New York. 

The study showed how the spectrum of a blue felt target panel varied slightly because of 

background but was significantly altered and reduced when shaded.  They performed a 

match filter detection algorithm and showed that the shaded spectrum was not just a 

magnitude change but actually made the material look spectrally different to the sensor.   

They created a forward physics based model with LiDAR data, that when used as a match 

filter found their targets in both shaded areas and in the open. Many improvements still 
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need to be made, however, as the process was not able to detect all targets in a single 

pass. Figure 16 shows some of the LiDAR processing that was done in order to automate 

shadow detection (Ientilucci, 2012). 

 

Figure 16.   Shadow map (left) and an illumination map (right) created from LiDAR 
images at the Rochester Institute of Technology (From Ientiluccci, 2012) 

3. Fusion Feature Detection 

The National Geospatial-Intelligence Agency (NGA) performed a study over 

Kandahar, Afghanistan to use multi-source fusion to create 2D and 2.5D data to portray 

the dynamic urban landscape. Their study indicated that nearly 15% of the buildings 

required vegetation detection in order to be successfully validated. Their study also 

analyzed temporal change detection at the object level and addressed issues involving 

building features such as balconies, TV dishes, domes, and other attributes. The study 

included NGA’s Urban Feature Data (UFD) vector information, LiDAR from the U.S. 

Army’s Buckeye collection system, and WorldView-2 multispectral imagery.   Temporal 

change detection was possible, as they had multiple Buckeye collections spaced six 

weeks apart. Using a combination of geometric analysis and NDVI calculations, they 

were able to create a framework to maintain a database to validate and update 3D urban 

features using the tools of the military and sensor communities. Figure 17 shows a 

sample of 3D temporal change detection that was observed (Arrington et al., 2012). 
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Figure 17.   Temporal building changes in Kandahar, Afghanistan  
(From Arrington et al., 2012) 

A project by the University College London used fusion data to improve methods 

of building extraction to achieve higher levels of accuracy and quality by using height 

and geometry information in conjunction with NDVI indices of the area. They utilized a 

tool called the Binary Space Partitioning (BSP) tree which merged convex polygons and 

divided extracted lines to create full building outlines. The analysis utilized pan-

sharpened multi-spectral imagery from IKONOS in conjunction with LiDAR. Their study 

area was a subset of an industrial area in the Royal Borough of Greenwich, London, 

United Kingdom. The process was a two-step procedure that included building detection 

and description; first detecting dominant features and then isolating them from the 

background. They compared their results with the Ordnance Survey and rated their 

accuracy at 90.1%. In the error analysis, they predicted that false positives and false 

negatives could be reduced with a more evenly distributed point cloud at a higher density. 

Figure 18 shows the result of their building extraction process and comparisons to their 

sources (Sohn & Dowman, 2007).  



 20 

 

Figure 18.   Building Extraction in Greenwich: (a) Building Map; (b) extraction results 
subset; (c) Ordinance Survey; (d) extraction errors (light grey: true 

positives; dark grey: false positives; false negatives)  
(From Sohn & Dowman, 2007) 

A study at the Naval Postgraduate School looked at the fusion of LiDAR and 

spectral data using methods that would be meaningful to city planners and emergency 

responders (Kim et al., 2012). Their research goal was to detect building rooftops, which 

in turn detected building footprints. The study area was over Monterey, California, and 

utilized LiDAR collected from the ALTM (Airborne Laser Terrain Mapper) Gemeni 

system and spectral data from WorldView-2. The process involved a series of extractions, 

masks, and exceptions. With the LiDAR data, statistics were found on local 

neighborhoods and flat surfaces were extracted from the rest of the background. LiDAR 

based masks were then used to differentiate points that were considered ground and 

points that were considered vegetation based on multiple returns. Exclusions occurred 

based on area sizes. Areas less than ten square meters were likely false alarms and areas 

larger than thirty square meters were likely highways. NDVI was calculated using the 
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spectral image. An NDVI threshold of 0.35 and higher mapped healthy vegetation, which 

could then be removed. The results were an effective method for extracting rooftops 

based on LiDAR/MSI fusion, which would be difficult without both data sets. Figure 19 

shows some of the results from their process (Kim et al., 2012).  

 

Figure 19.   Rooftop extraction results in Monterey, CA; the bottom row shows fused 
(LiDAR and WV-2) extraction results in white with red showing false 

alarms from the LiDAR only extraction (From Kim et al., 2012) 

D. THEORY 

The core of this research utilized a rule based classifier as a type of decision tree. 

Decision trees form a multistage or hierarchical decision scheme similar to the branches 

of a tree. They begin with a root of all the data and branch to internal nodes that create a 

series of splits that end up at terminal nodes. Each of the nodes is a binary decision that 

sets it as one class or keeps in in the remaining classes, eventually moving through the 

tree to the end nodes. Rather than creating one complex decision, the decision tree 

technique breaks it down into a series of simpler choices (Xu et al., 2005). 

The approach to this thesis combined some of the previous efforts’ techniques in 

deriving data through the point cloud and multispectral image, creating nodes in the form 

of masks. Some of the other works focused on detecting specific target types using 

fusion. This project focused on combining the efforts in order to classify an entire urban 
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scene as best as possible. While spectral signatures generally do well at identifying 

materials, fusion techniques impose many more requirements that need to be met before a 

pixel is classified as a particular material. 

One of the consistent themes from the literature review was the need to 

differentiate vegetation from non-vegetation. Spectral differentiation of these is 

important, as some vegetation and man-made objects can appear geometrically similar. 

NDVI was calculated for this process to determine vegetation, and it was masked early in 

the tree process. 

Other masks were derived from LiDAR. Distinctions were made via number of 

returns, above ground level, and intensity as well as also utilizing some of the pre-set 

LiDAR classifications provided by the vendor.   

The terminal nodes were created through mask combinations, more specific types 

of material were isolated and regions of interest were dedicated to those subdivisions. 

The images were then classified using the maximum likelihood classifier. The results of 

the classifiers were multiple classified images with masked out areas. In order to create a 

complete image, these sets were then compiled together. 

E. STUDY AREA: SAN FRANCISCO, CALIFORNIA 

The study area for this project was San Francisco California. San Francisco is 

located in northern California near where the Pacific Ocean meets the San Francisco Bay 

and Golden Gate strait. It is situated at about North 37.759880 latitude and West 

122.437393 longitude. The area of the city is about 47 square miles with a population 

density of about 17,200 persons per square mile. The population was estimated at about 

813,000 in 2011 (U.S. Census, 2010). 

Because of its unique location, San Francisco is an ideal location for this project. 

The area features everything from beaches and parks to large bridges and skyscrapers all 

in relatively close proximity to each other. This diverse mix of urban and natural 

landscapes was beneficial for assessing the effects of LiDAR and multispectral fusion. 

Figure 20 shows San Francisco County in relation to the rest of California. 
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Figure 20.   San Francisco County (Red) inset with the state of California (Gray)  
(From Wikimedia Commons, 2008). 
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III.  PROBLEM 

A.  OVERVIEW 

The main problem addressed in this thesis was to evaluate combined classification 

techniques of LiDAR and multispectral data, maximizing accuracy and minimizing 

misclassification. The fusion techniques explored here attempt to preserve the grid and 

network created by human roads and buildings while still being able to spectrally classify 

the area of interest. 

B.  DATA SET AND COLLECTION METHODS 

1.  Golden Gate LiDAR Project 

The LiDAR data used in this project comes from The Golden Gate LiDAR 

Project. The project collected LiDAR data, aerial photography, and hyperspectral 

imagery. At the time of this writing, the hyperspectral data were not available. The 

project collected data in Northern California and collected information on 835 square 

miles of Marin County, San Mateo County, Sonoma County, and San Francisco County. 

See Figure 21 for collection area. The flights were completed between April 23, 2010 and 

July 14, 2010 utilizing a Cessna 207 aircraft. The LiDAR system used was a Leica 

ALS60 MPiA (multi-pulse in air). The system collected multiple returns in X, Y, Z, as 

well as pulse intensity and full waveform data. Points were collected at a density of about 

2 points per square meter with a 15% side lap in a 28 degree field of view. A network of 

ground control stations were used during the flights using a Trimble R7 with a Zephyr 

geodetic model 1 antenna. Flights were also coordinated to collect during the lowest tides 

possible. In order to achieve the best data collection, criteria included a low PDOP 

(Positional Dilution of Precision) of less than 2, a baseline no greater than 25 miles, a 

constant slope, and observation at moderate intensities (Hines, 2011). 
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Figure 21.   Golden Gate LiDAR Project acquisition area (From Hines, 2009) 
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The raw LiDAR data were initially processed by Earth Eye LLC, and further 

processed by The GGLP group at San Francisco State University. Calibration was 

achieved using information from GPS and IMU collects as well as attuned to sensor and 

flight line data. The points were auto-classified with algorithms that consider slope, 

angular, relationships, and distance which defined 95% of the project area. Further 

reclassification was done on more than 10% of the points with further manual inspection 

of the points. The resulting points were classified as follows:  

• 1 - Processed, but unclassified 

• 2 - Bare-earth, ground 

• 4 - Vegetation, all above-ground objects including buildings, bridges, piers 

• 7 - Noise 

• 9 - Water 

The LiDAR data was assessed at a vertical accuracy root mean square error of 

less than 9.25 cm. The delivered product is displayed in the UTM (Universal Transverse 

Mercator) coordinate system, with units in meters, in zone 10 north, with horizontal 

datum NAD83 (North American Datum of 1983), and vertical datum NGVD88 (North 

American Vertical Datum of 1988). Each tile is 1500 x 1500 meters and delivered as 

LAS (Laser File Format) v1.2 and v1.3 that included waveform. For this project, the LAS 

v1.2 tiles were utilized. See Figure 22 for a sample of the processed point cloud. 
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Figure 22.   A sample of the GGLP point cloud over downtown San Francisco viewed in 
Quick Terrain Modeler 

2.  WorldView-2 

The image used in this project was collected by WorldView-2 on November 8, 

2011 at Zulu time 19:34:42 (11:34 AM, local Pacific Time). The image in centered on 

San Francisco County. In order to limit the amount of perceptual layover that is caused 

by the taller buildings, the image was chosen at a very close to nadir viewing angle of 

15 degrees. This image was also chosen because it had very low cloud cover of about 1%. 

The sun elevation at the time of the image acquisition was 35.58 degrees, which does 

create longer shadows than a directly overhead sun. The image was cataloged under the 

name: 11NOV08193442-M2AS-052753574130_01_P002. The raw image was delivered 

in TIF format as DigitalGlobe’s Standard 2A product type. The image had 2-meter square 

pixels and was projected in UTM, Zone 10 N with the WGS-84 (World Geodetic System 

of 1984) datum. See Figure 23 for an overview of the multispectral image. 
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Figure 23.   The WorldView-2 multispectral image of San Francisco in true color  

3.  Subset based on LiDAR 

The thesis focuses on the urban areas of San Francisco County. The chosen area 

consists of 25 LiDAR tiles in the northeast sector of San Francisco. The area was chosen 

because it included all of downtown, a portion of The Bay Bridge, coastal areas, piers, 

part of Golden Gate Park, commercial areas, and suburban areas. The area was selected 

as a good composition of typical urban features of larger metropolitan areas but is still 

manageable by a typical personal desktop computer. See Figure 24 for a map layout of 

the selected area. 
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Figure 24.   The area of interest as indicated by the cyan outlined tiles: left-full coverage 
region; right-San Francisco County study area 

In order to perform fusion analytics between the multispectral and LiDAR sets, 

the information between the two must be aligned properly so as to not offset anything nor 

introduce noise into either image.  

As the multispectral image is the basis of spectral classification, the masks and 

DEM created from the LiDAR data were matched and projected to the same UTM map 

projection and datum as the WorldView-2 image. Because it is more difficult to 

manipulate the actual points of the point cloud, the WorldView-2 image was 

orthorectified and cropped to match the LiDAR generated Digital Elevation Model.   This 

is explained further in the Methods section of this thesis. 

C.  SOFTWARE USED 

1.  Quick Terrain Modeler 7.1.5 

Quick Terrain Modeler (QTM) is a 3D visualization software package created by 

Applied Imagery and designed for use with LiDAR data. The software is used by many 

organizations within The Department of Defense including the U.S. Army AGC Buckeye 

program and The National Geospatial-Intelligence Agency’s IEC platform. It has the 

ability to bring in LAS tiles and create point cloud or surface models. It utilizes 

proprietary file formats called QTA (point cloud), QTC (un-gridded point cloud), and 
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QTT (gridded surface) but has the capability to export models into a variety of other 

formats such as GeoTIFF, LAS, ASCII, and shapefile. It also has a multiplicity of tools 

that can perform analysis such as flood assessment, helicopter landing zones, and line of 

sight (Applied Imagery, 2012). 

2.  E3De 3.0 

E3De (Environment for 3D Exploitation) is a LiDAR tool created by Exelis visual 

Information Solutions (VIS). E3De has the ability to process point cloud information and 

quickly extract and identify 3D features for fusing into traditional 2D imagery. 

Extractions include orthophoto, Digital Elevation Model, Digital Surface Model, 

buildings, power lines, and trees, among others. It also has the ability to manually refine 

generated features to better match reality. Products can be exported as topographic, 

raster, .csv, GeoTIFF, LAS, SHP, and ENVI image formats (Exelis Vis, 2012). 

3.  ENVI 4.8 

ENVI (The Environment for Visualizing Images) is a powerful imagery analysis 

tool created by Exelis VIS. ENVI is a robust image processing and analysis system that 

can work with many sources of imagery from airborne and satellite systems like AVIRIS, 

WorldView, and RadarSat. It has the ability to process different types of data such as 

multispectral, hyperspectral, polarimetric, radar, and some LiDAR data. It has built in 

tools allowing for tasks such as change detection, registration, orthorectification, and 

classification. It can also work in many formats such as HDF, CDF, GeoTIFF, and NITF. 

The program is customizable, with many users creating their own custom code in order to 

perform more specific tasks not previously built into the software suite. This project used 

ENVI for applying LiDAR derived masks to spectral imagery and then classifying the 

image (Exelis VIS, 2012). 

4.  IDL 8.0.1 

IDL (Interactive Data Language) is a programming language used for data 

analysis and commonly used for image processing. IDL is the programming backbone of 

ENVI and the language in which custom ENVI code is written. IDL has a dynamic 
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variable typing system that is useful avoiding recompilation and prototyping change 

variables and values (Exelis Vis, 2012). For this project, custom IDL code was written to 

merge separate classified images into one and generate a random sample of points for 

ground truth analysis. 
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IV. METHODS AND OBSERVATIONS 

A.  PROCESS OVERVIEW 

The focus of this thesis was to create a robust technique for fusing LiDAR and 

spectral imagery for creation of a more accurate classified image than MSI alone. 

Essentially this technique used LiDAR to create a series of masks. The multispectral 

image was used to create a vegetation mask. Through a mixture of mask combinations 

and classification, this technique constrained pixels to meet a number of requirements 

before designation of seven general classes. A maximum likelihood classifier was run 

against each general class using a limited number of regions of interests. The resulting 

classified images were then combined into one. It was expected that this rule based 

classification technique would create a more accurate classified image than LiDAR or 

multispectral on their own.   

B.  POINT CLOUD PROCESSING 

The basis for this technique required information from the LiDAR to be extracted 

and used in a raster form that can be transformed into a mask. The study area was defined 

by the selected number of tiles and E3De and Quick Terrain Modeler were used to extract 

particular sets of information. 

1. E3De – DEM, DSM, Intensity, AGL 

E3De has the ability to bulk process LAS tiles and generate a number of products 

based upon built-in algorithms from the software. The tiles were imported into E3De and 

the projection was set to match the WorldView data: UTM, datum WGS84, meter, and 

zone 10N. Using E3De’s processing tools, a digital elevation model, digital surface 

model, and an orthophoto product were selected to be generated. The orthophoto product 

utilizes intensity values and creates a raster intensity image with values between 0 and 

255. Each product was set to have a resolution of 2 meters, also to match the WorldView 

data. For the DEM, a setting called Filter Lower Points was set to Urban Area Filtering. 

Default settings were used for the other options and the process was then run on the data. 
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The resulting products were created in ENVI raster and elevation formats with Z values 

representing height above sea level in meters.   

Another product, known as the AGL or above ground level was derived from the 

DEM and DSM. This image was used to give z values based on height above the surface 

value rather than height from a set sea level. In order to create this image, both the DEM 

and DSM were loaded into ENVI as bands. Band Math was then utilized to do a pixel by 

pixel subtraction of the Digital Elevation Model from the Digital Surface Model. The 

result is an AGL image with digital number values representing meters above the ground 

level. Figure 25 shows a representation of each of these images with darker pixels 

indicating lower values and lighter pixels indicating higher values. 

  

  

Figure 25.   LiDAR E3De derived images:  top left-intensity; top right-DEM;  
bottom left-DSM; bottom right-AGL 
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2. QTM – Classifications, Number of Returns 

Two other types of LiDAR information were extracted from the LAS tiles, which 

include vendor-provided classification types and number of returns. Quick Terrain 

Modeler was utilized in order to create raster versions of these data. Single classification 

categories were loaded into QTM for both water and ground classifications. After the 

classification was loaded as a point cloud, it was then converted into a proprietary QTT 

surface model with simple interpolation smoothing and matched to the projection and 

resolution of the WorldView data. The QTT surface model was then exported as a 

GeoTIFF image, which can be utilized by ENVI for mask creation.   

Quick Terrain Modeler also has the ability to remove features based on number of 

returns. All of the tiles were loaded into QTM and then analyzed utilizing the generate 

grid statistics tool. The number of returns variable was selected and metrics were 

calculated which could separate areas which received only one return or two or more 

returns. Points which only had one return were then removed from the loaded data via the 

filtering tool. The remaining points were exported as a GeoTIFF. This image was used to 

separate trees from grass. The multiple-return showed dense vegetation and also extracted 

building outlines. Figure 26 shows the two LiDAR classification images and the 

multiple-return image. 

   

Figure 26.   LiDAR QTM derived images: left-water class; center-ground class;  
right-multiple returns 
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C.  MULTISPECTRAL PROCESSING 

1.  Conversion into Reflectance 

The WorldView-2 imagery in this project was delivered by DigitalGlobe as a 

Standard Level 2A file. The image itself was in a raw state that displayed the collected 

intensities from the sensor. The image was first transformed into radiance. ENVI has a 

WorldView tool that allows for the process to be automated. The tool requires the *.IMD 

file, which includes metadata from the image that is used in the conversion, and the 

output is in floating point format to preserve data precision. The resulting spectrum from 

the radiance image resembles that of a solar spectrum. In order for reflectance conversion 

to run successfully, the radiance image was converted from an interleave type of band 

sequential (BSQ) to a band interleaved by line (BIL) type. 

FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) 

atmospheric correction was used for this project.   FLAASH is a widely used model 

developed by the Air Force Research Laboratory and its partner organizations. It removes 

atmospheric effects caused by aerosols and water vapor and creates an image in units of 

reflectance (Adler-Golden et at., 1999). ENVI has a FLAASH tool that requires the 

following inputs. Values listed which were acquired from the image metadata and 

regional characteristics of the scene: 

• Scene Center: Sample: 4456, Line: 4009 

• Scene Center: Latitude 37 44 36.84, Longitude -122 26 34.03  

• Sensor Altitude: 770 km 

• Ground Elevation: 0.0158 km 

• Pixel Size: 2.0 m 

• Flight Date: Nov 08 2011 

• Flight Time: 19:34:42 

• Atmospheric Model: Mid-Latitude Summer 

• Aerosol Model: No Aerosol 

• Aerosol Retrieval: None 

The resulting FLAASH output image was a reflectance image that was spectrally 

corrected but not yet orthorectified and cropped to match the LiDAR data and masks. 
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Although visually, the conversions do not appear to make a significant change in the data, 

the spectral differences between the conversions are significant, and are displayed in 

Figure 27 of a sample of a grass vegetation spectrum from the images. 

 

 

Figure 27.   Spectral changes from raw WV-2 data to radiance and then reflectance 

2.  Orthorectification and Cropping to Subset 

The ENVI orthorectification tool requires RPC coefficients and a Digital 

Elevation Model. The RPC coefficients were provided with the multispectral data as the 

*.RPB file. The DEM generated from the LiDAR was used in the processing. The setting 

to match an existing file was selected and the DEM was chosen. The result is an 

orthorectified reflectance cropped to match the LiDAR area of interest. Figure 28 shows 

the original data area and the cropped data area. 
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Note the no-data region in the northern part of the image. This region was not 

cropped so as to maintain the square LiDAR images, however when assessing the final 

classified images, this region was omitted. 

 

Figure 28.   Orthorectified WorldView-2 image in true color 



 39 

D.  MASK CREATION 

1.  LiDAR-based Masks 

The core of this fusion technique revolves around mask creation using the LiDAR 

data as the basis for the rules. Five masks were created from the LiDAR data which 

representing the water class, ground class, multiple returns, intensity, and above ground 

level.  

ENVI has the ability to build masks based on the digital number values of an 

image. Generation of the water class, ground class, and multiple returns images was fairly 

straightforward as values greater than zero were determined to be features and anything 

else was not. The build mask tool allows these criteria to be entered and Figure 29 shows 

the three created masks. The mask’s values are all now either zero, indicating the mask as 

off or one, indicating the mask as on. 

   

Figure 29.   Masks: left-water class mask; center-ground class mask;  
right-multiple returns mask 

In a study on LiDAR intensity mentioned earlier from the University of 

Cambridge and University of Wales, research determined that most natural objects had 

LiDAR intensity returns of 50% or higher, whereas manmade materials were typically 

less than 50% (Antonarakis et al., 2008). The generated intensity image has values 

between 0 and 255.   A histogram of the LiDAR intensity was created and is displayed in 

Figure 30. The histogram did indicate a natural inflection breakpoint between manmade 
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and natural near the value of 120, slightly less than 50%. This was utilized in order to 

differentiate natural and manmade surface features processed accordingly using build 

mask. 

 

Figure 30.   Histogram of LiDAR intensity values 

In a similar manner, the AGL were used to differentiate regular buildings from 

skyscrapers. There is no set standard for what height distinguishes a building as a 

skyscraper, as it can be relative the rest of the skyline, but for the purposes of this project, 

the skyscraper threshold was set at fifty meters. Figure 31 shows the resulting Intensity 

and AGL masks. 

  

Figure 31.   Masks: left-intensity mask (greater than 120);  
right-AGL mask (greater than fifty meters) 
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2.  Spectrally-based Mask 

The final mask is a vegetation mask created via the multispectral NDVI. ENVI 

has the ability to calculate this and some other vegetation indices. The resulting values of 

this algorithm lead to assignment of value between -1 and +1 to each pixel. As a standard 

rule, typical vegetation falls between 0.2 and 0.8. After analyzing the results of the 

WorldView values between 0.2 and 0.8, it became apparent that range was missing some 

vegetation, since it produced a value higher than 0.8. Readjusting the scale and analyzing 

results with NDVI values between 0.2 and 1.0 captured most of the vegetation. Using the 

build mask tool and setting the NDVI values between 0.2 and 1.0 created a mask band for 

vegetation. Figure 32 shows the progression from NDVI band to mask band.  

   

Figure 32.   NDVI: left-NDVI false coloring as red band; center-NDVI displayed in 
grayscale; right-NDVI mask (greater than 0.2) 

3.  Fusing Masks 

To begin the rule based classification process, the created masks were fused 

together by applying masks to other masks. This resulted in seven distinct classification 

sets based on LiDAR and NDVI. These classes included: water, tree, grass, earth, road, 

skyscraper, and building. 

a. Water 

The water mask was created solely on the original water class mask. All 

the areas in this region represent water. 
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b. Tree and Grass 

The tree and grass masks first utilize areas that are considered not water 

class. Areas that have an NDVI value greater than 0.2 are then masked which indicate 

vegetation. The vegetation mask is further masked by the multiple returns mask. If the 

area also has multiple LiDAR returns, the resulting mask is the tree mask. If the area only 

has one LiDAR return, the resulting mask is the grass mask. 

c. Earth and Road 

The earth and road masks follow the process above for exclusion from the 

water class. The NDVI mask is then applied to ensure the NDVI value is less than 0.2 to 

indicate it is not vegetation. The next mask applied is the ground class mask which 

ensures the remainder is considered ground. It is then further masked by the intensity 

mask. If the intensity value of the area is greater than 120, the resulting mask is the earth 

mask. If the intensity value of the area is less than 120, the resulting mask is the road 

mask. 

d. Skyscrapers and Buildings 

The last set of masks was the skyscraper and building masks. Again, they 

initially follow the same procedure to determine that they are not in the water class. The 

NDVI mask was then applied to ensure a value of less than 0.2 indicating not vegetation, 

and in turn the ground class mask was applied this time to ensure the remainder was not 

considered ground. The above ground level mask was the last to be applied. If the AGL 

value is greater than fifty meters, the resulting mask is the skyscraper mask. If the AGL 

value was less than fifty meters, the resulting mask is the building mask. 

Figure 33 shows the results of each of the seven fusion-derived masks 

representing the terminal nodes of the decision tree.   
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Figure 33.   Fused masks: top left-water; top right-tree; middle left-grass; middle center-
earth; middle right-road; bottom left-skyscraper;  

bottom right-building 

E.  REGIONS OF INTEREST AND CLASSIFICATION 

1.  Creating Regions of Interest 

For this project, twelve regions of interest were created in order to run a 

classification tool against the images. The ROIs were created based on visible inspection 

of the true color imagery. Each classification was also designated to one of the seven 
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masks where that classification fell within that mask’s parameters. The urban landscape 

and physical cues such as the road network and grid system were better preserved using 

this technique. The ROIs created along with their mask are as follows:   

• Water – water 

• Tree – tree1 (urban), tree2 (park) 

• Grass – grass field, tennis court 

• Earth – beach, soil 

• Roads – pavement 

• Skyscraper – skyscraper 

• Building – commercial roof, residential roof, elevated pavement 

Figure 34 shows the average spectra for each ROI. These were used as the training data 

for the maximum likelihood classifier. Note some of the similarities of the manmade 

spectra in multispectral data. 
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Figure 34.   Training data: the average spectra for each region of interest   

2.  Classification 

The Maximum Likelihood classifier was chosen to apply supervised classification 

with the created ROIs. Maximum likelihood is a classifier that assumes the statistics in 

each band are normally distributed and calculates the probability that each pixel belongs 

and assigns classification based upon its maximum likelihood. The WorldView 

reflectance image was selected as the input file and one mask was selected as the mask 

band. The corresponding ROIs were then selected for processing. In order to make the 

process as robust as possible, the probability threshold was set as ‘none’ and data scale 
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factor set at 1.00. Once the classified image was created, the file was saved as an ENVI 

data file. This process was repeated each time with the seven created masks utilizing each 

set of ROIs. Figure 35 shows each of the resulting seven classified images. 

 

  

   

  

Figure 35.   Masked classification results: top left-water; top right-tree;  
middle left-grass; middle center-earth; middle right-road;  

bottom left-skyscraper; bottom right-building 



 47 

For comparison, the maximum likelihood classifier was run again, this time on the 

entire WorldView-2 image with all regions of interest, without utilizing the fused masks. 

Figure 36 shows the results of the classifier without fusion.  

 

 

 

Figure 36.   WorldView-2 classification results without fusion, multispectral only 

• Water • Grass 
• Treel Beach 
• Trcc2 • Soil 
• Tennis Court • Pavement 

• Skyscraper 
• Elevated Pavement 
• Residential Roof 

Commercial Roof 
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3.  Fusing the Classified Images 

A composite image fusion of the seven masked classification images was 

performed using a custom IDL program. Arrays were created for each image. Each image 

was run sequentially with masked pixels in the first image being replaced with all values 

from the next array. This was repeated until each fused classified image had been 

scanned and a single coherent classification image remained with no pixels set as masked 

or unclassified. 

The resulting image did not have an associated header file. In order to display the 

fused image correctly, geographic information was taken from the WorldView 

reflectance image. The classification values and colors were edited manually to correct 

discrepancies in class order and associated color. 

The final fused classification, incorporating LiDAR fusion and limited spectral 

classifications is presented in Figure 37. The entire process is diagramed in the flowchart 

in Figure 38.    
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Figure 37.   Final fused classification image 
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Figure 38.   Flowchart of fusion classification technique decision tree 
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V. EVALUATION AND ANALYSIS 

This chapter compares and evaluates the created products. The first section 

describes visual comparison between the MSI classification image and the fused 

classification image. A true color image is displayed next to them for reference. The next 

section analyses collected ground truth results and error matrices. 

 A. INITIAL VISUAL COMPARISON AND ANALYSIS 

One of the most noticeable differences seen quickly in the classification results is 

how some of the water in the MSI class image was classified as pavement. Figure 39 is a 

sample of this near Gashouse Cove in the northern shore of San Francisco. 

   

 

Figure 39.   Northern shore near Gashouse Cove: left–true color;  
center-MSI classification; right-fused classification 

From the true color image, it appears that there may have been sediment in the water that 

altered the spectra of those areas leading the classifier to predict pavement rather than 

water. The fused image does not suffer from this because a LiDAR based mask was 

applied to the water. There do seem to be errors in the fused image as part of the docks 

are missing and additional non-water areas are added. This is most likely due to errors in 

the LiDAR water classification or errors that occurred when the point cloud was 

converted into a raster format. 



 52 

 Another interesting variation is how vegetation in parks was classified. Figure 40 

shows the northeast corner of Golden Gate Park. 

   

 

Figure 40.   Northwest corner of Golden Gate Park: left–true color;  
center-MSI classification; right-fused classification 

The treed areas in the MSI-only image match what the true color is displaying better than 

the fused results. The fused results display more sparsely laid out trees with more area 

classified as grass. The node used to differentiate trees from grass was the number of 

returns based on the LiDAR data. The theory behind this was that areas with multiple 

returns were more likely trees than grass. The results indicate that some treed areas also 

display a single return. Tree species and leaf thickness play a large role in this 

determination along with seasonal leaf-on and leaf-off status. In this example, the LiDAR 

data were collected in leaf-on spring and summer conditions. It seems that MSI alone 

may have proved to be more accurate in separating trees from grass than this fused result. 

 A large paved area near Pier 48 is displayed in Figure 41. This area shows a fairly 

large expanse of paved area with the large parking lot. Soil, beach, and elevated 

pavement are fairly mixed in the MSI image. Their spectra are very similar and are not 

varied enough to clearly differentiate them. The fused results show the same type of 

mixture occurring as well. The MSI-only image does indicate some areas that are 

skyscrapers. The true color image reveals that those areas are actually shadowed areas 
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whose spectra may appear similar to the region of interest created for the skyscraper. The 

fused result does do a slightly better job at preserving the road network geometry.   

   

 

Figure 41.   Dock area on eastern shore near Pier 48: left–true color;  
center-MSI classification; right-fused classification 

 The next area of analysis was deeper in the city and the road networks. Figure 42 

shows part of the urban area near the junction of U.S. Highway 101 and Broadway Street, 

slightly north of downtown proper. 

   

 

Figure 42.   Urban area near U.S.-101 and Broadway: left–true color;  
center-MSI classification; right-fused classification 
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The misclassified pavement areas seen in the last example are present here as well. The 

MSI classification image does a decent job at distinguishing buildings and vegetation 

from the rest of the scene but much of the road network is lost in the rest of the 

classifications. The fused results do a good job at preserving the road network and 

building geometries. By incorporating the LiDAR information regarding ground and 

intensity as well as NDVI, the pavement network is kept crisp. Within the bounds of the 

roads, the fused image is able to distinguish some soil and vegetation in between roads on 

the medians. There is still some misclassification in the fused image with soil type 

classification sprinkled a bit amongst the roads. This could be attributed to an intensity 

threshold that may need to be adjusted and also the spectral similarities between the two 

classes. 

 The next set of images will be in the heart of downtown San Francisco. Figure 43 

shows the results from that area. 

   

 

Figure 43.   Downtown San Francisco: left–true color; center-MSI classification;  
right-fused classification 

Due to the very tall buildings, there are many shadows cast in this region. Shadows tend 

to modify the normal spectrum of a material and make it appear like a different material. 

Because the WorldView-2 image is not exactly nadir, the layover effect is occurring in 

the image. This is an artifact where the objects with higher elevations appear in pixels 
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offset from their true ground locations. The LiDAR data do not suffer from this artifact 

due to the nature of the data, but practically all spectral sensors will show some slight 

layover of tall features if the image is not perfectly nadir. The MSI-only classification 

image is affected more by shadow, as almost all the shadowed areas are classified as one 

of the building types. Surprisingly, there are large areas in downtown that the MSI-only 

image classifies as types of trees, which may also be a result of the spectral modification 

caused by shadows. The fused image displays downtown quite well. The combination of 

LiDAR ground class and above ground levels performs well at distinguishing buildings 

from the road pavement and also dividing buildings and skyscrapers.  

 The last section that was visually inspected was the San Francisco end of the San 

Francisco-Oakland Bay Bridge. These images are displayed in Figure 44. 

   

 

Figure 44.   The San Francisco-Oakland Bay Bridge: left–true color;  
center-MSI classification; right-fused classification 

The most noticeable feature of this image is that the Bay Bridge and its shadow are 

classified as two different objects in the MSI-only image. The bridge itself is classified as 

a mixture of elevated pavement, pavement, soil, and beach which is spectrally typical of 

the other non-building man made areas already analyzed. Although physically water, the 

bridge shadow on the water caused enough spectral dissimilarity to cause it to be 

classified as a skyscraper. The fusion image performs well in this scenario due to the 
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water classification from the LiDAR. The bridge is also classified as a skyscraper. 

Although a misclassification by name, the bridge does fit the rules set of not being water, 

not being vegetation, and being over fifty meters tall from the respective surface.   

B. GROUND TRUTH AND ERROR MATRICES 

In order to accurately evaluate the created products, ground truth was needed for 

the study area. A random sampling distribution was created throughout the study area 

using custom IDL code. At least 10 points were collected from each of the classification 

types. Ground truths were collected through a combination of on-site ground truthing and 

analysis of open source StreetView images and Earth imagery available from Google.  

220 points were created and evaluated for this process. For each point, classification 

results were collected for the fused classification image, the multispectral classification 

image, and ground truth.   

During ground truthing, it was determined that tree1 and tree2 classifications 

would best be combined for analysis, as tree species were difficult to determine based on 

resources available. Due to this, a combined tree class was used.   

The northern area of the WorldView-2 image includes an area of no data. This 

area was beyond the limits of the multispectral image, but was necessary for the LiDAR 

processing and was obviously misclassified as residential roof in the MSI-only image. 

Any ground truth point created in the no-data region was omitted in order to provide a 

better analysis result of all images. 

Each classification image was then compared to the ground truth and two error 

matrices were created.   
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1. Multispectral Classification Analysis 

Table 1 is the error matrix created for the multispectral-only classification image.  
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Beach 
 0.43 0.14 0.00 0.00 0.14 0.14 0.00 0.14 0.00 0.00 0.00 
Commercial 

 

0.00 0.44 0.00 0.00 0.19 0.13 0.13 0.06 0.00 0.06 0.00 
Elevated 

 

0.00 0.32 0.37 0.05 0.26 0.00 0.00 0.00 0.00 0.00 0.00 
Grass 
 0.00 0.00 0.00 0.80 0.10 0.10 0.00 0.00 0.00 0.00 0.00 
Pavement 
 0.00 0.22 0.00 0.03 0.41 0.11 0.03 0.03 0.03 0.11 0.05 
Residential 

 

0.00 0.14 0.00 0.02 0.39 0.15 0.02 0.03 0.00 0.08 0.17 
Skyscraper 
 0.00 0.26 0.00 0.00 0.30 0.07 0.26 0.07 0.00 0.00 0.04 
Soil 
 0.00 0.13 0.00 0.00 0.13 0.13 0.00 0.38 0.00 0.25 0.00 
Tennis 

 
 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
Trees 
 0.00 0.05 0.00 0.11 0.11 0.00 0.05 0.00 0.00 0.63 0.05 
Water 
 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

Table 1.   Error matrix of MSI-only results; overall accuracy was 45% 

Tennis courts and water were found to be 100% accurate; each randomly sampled point 

with that classification was correctly classified as that material. Grass was well classified 

at 80% and trees were classified at 63% with some misclassifications. The rest of the 
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classifications were below 50% and had more of a mixture of error results. Minerals, 

soils, and manmade material tend to be spectrally similar and their distinctions may be 

less apparent. 

2. Fused Classification Analysis 

Table 2 is the error matrix for the fused classification results. 
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Beach 
 0.30 0.00 0.00 0.10 0.40 0.00 0.00 0.20 0.00 0.00 0.00 
Commercial 

 

0.00 0.69 0.00 0.00 0.06 0.13 0.00 0.06 0.00 0.00 0.06 
Elevated 

 

0.00 0.42 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Grass 
 0.00 0.10 0.00 0.30 0.13 0.10 0.00 0.10 0.00 0.23 0.03 
Pavement 
 0.00 0.12 0.00 0.02 0.75 0.07 0.00 0.02 0.00 0.03 0.00 
Residential 

 

0.00 0.53 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.06 0.00 
Skyscraper 
 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
Soil 
 0.00 0.17 0.00 0.00 0.25 0.17 0.00 0.25 0.00 0.17 0.00 
Tennis 

 
 

0.00 0.20 0.00 0.00 0.00 0.20 0.00 0.00 0.60 0.00 0.00 
Trees 
 0.00 0.00 0.00 0.12 0.12 0.06 0.00 0.00 0.00 0.71 0.00 
Water 
 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.98 

Table 2.   Error matrix of fused classification results; overall accuracy was 65% 
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The Fused Classification Results performed very well at maintaining city 

geometry when applying their classification. Skyscraper class and water class was rated 

at 100% and 98% respectively. In the mid-range, trees performed at 71%, tennis court at 

60%, pavement at 75%, elevated pavement at 58% and commercial roof at 69%. Beach at 

30% and soil at 25% performed low in comparison, most likely due to the spectral 

similarity as well as their geometric similarity which grouped them into the same 

terminal node. 

Residential roof classification had an accuracy of 41%, which is also low. This 

may be due the study area having a greater number of commercial roofs in the area; many 

of the errors in residential roof were verified to be commercial roof at 42%. Another 

surprise result was that of grass at 30%. The MSI classification image had a much higher 

accuracy of 80%. When analyzing the fused results, 23% of the misclassifications were 

verified trees in the ground truth. Grass classification could also be the most susceptible 

to temporal changes. Grass can quickly change both spatially and spectrally if dug up for 

a construction project or even obscured by taller growth of other vegetation. It was also 

previously mentioned that this may have been caused by inaccuracies of the number of 

returns mask distinguishing trees from grass. 

Overall the fused classification results had a total accuracy of 65% and the MSI-

only classification had a total accuracy of 45%. This difference showed significant 

improvement in the classification results. 
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VI. CONCLUSIONS 

A. PRODUCT ASSESSMENT 

This research fused airborne LiDAR data and WorldView-2 (WV-2) multispectral 

imagery (MSI) data to create an improved classification image of urban San Francisco, 

California.   

A decision tree scenario was created by extracting features from the LiDAR, as 

well as NDVI from the multispectral data as raster mask decision tree nodes that resulted 

in seven general classes. Twelve regions of interest were created, then categorized and 

applied to the previous seven classes via the maximum likelihood classification and 

combined. This was compared to a multispectral classification image using the same 

ROIs.   

The fused classification image did a better job of preserving urban geometries 

than MSI data alone and suffered less from shadow anomalies. Overall the fused LiDAR 

and MSI classification performed better with 65% accuracy than the MSI classification 

alone with 45% accuracy. The fused classification image performed well at maintaining 

the geometries of the city and representing ground features fairly accurately. When 

viewing the fused results, the image immediately appears more similar to that of a vector 

generated map. 

The LiDAR and MSI fused classification image appears to be more representative 

of true reality than that of the multispectral-only classification image. There were some 

instances where the multispectral-only classification performed better such as 

differentiating trees from grass.   

Adjustments should be made to node thresholds. Further refinements to the 

decision tree scheme could be made to improve final results.   
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B. PRODUCT LIMITATIONS AND FUTURE WORK 

The product could be improved upon by acquiring different source data. The 

multispectral spectral resolution is not as high as that of a hyperspectral sensor. Using 

hyperspectral data, finer classifications could potentially be extracted such as soil types 

or tree species.   

Temporal differences played a large factor in some of the discrepancies seen in 

the image classifications. The LiDAR data and the WorldView image were acquired with 

some time separation. Ideally, spectral imagery and LiDAR data for this type of project 

should be obtained during the same flight missions or near the same time. Without this 

time delay, temporal artifacts such as vegetation growth, urban construction, or the 

mobility of vehicles and boats would be reduced. 

For future work, it would be interesting to see this technique applied to radar as 

well as other sources for nodes to be applied with spectral and LiDAR data. Another 

interesting idea would be to apply a more continuous model rather than a discrete binary 

model to each of the nodes. In this project, each node only had a yes or no option; it 

would be interesting to see how a number of bins could potentially lead to a more 

accurate classification.   

 Fusion method and techniques will continue to evolve as more data become 

available and software suites are adapted to utilize all collected information. It would be 

interesting to see this type of technique applied to multiple datasets in a single software 

program. 
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